esphome-ratgdo/components/ratgdo/ratgdo.cpp

499 lines
14 KiB
C++
Raw Normal View History

2023-06-05 17:12:51 +00:00
/************************************
* Rage
* Against
* The
* Garage
* Door
* Opener
*
* Copyright (C) 2022 Paul Wieland
*
* GNU GENERAL PUBLIC LICENSE
************************************/
#include "common.h"
#include "ratgdo.h"
#include "esphome/core/log.h"
namespace esphome
{
namespace ratgdo
{
static const char *const TAG = "ratgdo";
void RATGDOComponent::setup()
{
pinMode(TRIGGER_OPEN, INPUT_PULLUP);
pinMode(TRIGGER_CLOSE, INPUT_PULLUP);
pinMode(TRIGGER_LIGHT, INPUT_PULLUP);
pinMode(STATUS_DOOR, OUTPUT);
pinMode(STATUS_OBST, OUTPUT);
pinMode(INPUT_RPM1, INPUT_PULLUP); // set to pullup to add support for reed switches
pinMode(INPUT_RPM2, INPUT_PULLUP); // make sure pin doesn't float when using reed switch and fire interrupt by mistake
pinMode(INPUT_OBST, INPUT);
attachInterrupt(TRIGGER_OPEN,isrDoorOpen,CHANGE);
attachInterrupt(TRIGGER_CLOSE,isrDoorClose,CHANGE);
attachInterrupt(TRIGGER_LIGHT,isrLight,CHANGE);
attachInterrupt(INPUT_OBST,isrObstruction,CHANGE);
attachInterrupt(INPUT_RPM1,isrRPM1,RISING);
attachInterrupt(INPUT_RPM2,isrRPM2,RISING);
LittleFS.begin();
readCounterFromFlash();
if(useRollingCodes){
//if(rollingCodeCounter == 0) rollingCodeCounter = 1;
ESP_LOGD(TAG, "Syncing rolling code counter after reboot...");
sync(); // if rolling codes are being used (rolling code counter > 0), send reboot/sync to the opener on startup
}else{
ESP_LOGD(TAG, "Rolling codes are disabled.");
}
}
void RATGDOComponent::loop(){
obstructionLoop();
doorStateLoop();
dryContactLoop();
}
} // namespace ratgdo
} // namespace esphome
/*************************** DETECTING THE DOOR STATE ***************************/
void doorStateLoop(){
static bool rotaryEncoderDetected = false;
static int lastDoorPositionCounter = 0;
static int lastDirectionChangeCounter = 0;
static int lastCounterMillis = 0;
// Handle reed switch
// This may need to be debounced, but so far in testing I haven't detected any bounces
if(!rotaryEncoderDetected){
if(digitalRead(INPUT_RPM1) == LOW){
if(doorState != "reed_closed"){
ESP_LOGD(TAG, "Reed switch closed");
doorState = "reed_closed";
if(isConfigFileOk){
bootstrapManager.publish(overallStatusTopic.c_str(), "reed_closed", true);
bootstrapManager.publish(doorStatusTopic.c_str(), "reed_closed", true);
}
digitalWrite(STATUS_DOOR,HIGH);
}
}else if(doorState != "reed_open"){
ESP_LOGD(TAG, "Reed switch open");
doorState = "reed_open";
if(isConfigFileOk){
bootstrapManager.publish(overallStatusTopic.c_str(), "reed_open", true);
bootstrapManager.publish(doorStatusTopic.c_str(), "reed_open", true);
}
digitalWrite(STATUS_DOOR,LOW);
}
}
// end reed switch handling
// If the previous and the current state of the RPM2 Signal are different, that means there is a rotary encoder detected and the door is moving
if(doorPositionCounter != lastDoorPositionCounter){
rotaryEncoderDetected = true; // this disables the reed switch handler
lastCounterMillis = millis();
ESP_LOGD(TAG, "Door Position: %d", doorPositionCounter);
}
// Wait 5 pulses before updating to door opening status
if(doorPositionCounter - lastDirectionChangeCounter > 5){
if(doorState != "opening"){
ESP_LOGD(TAG,"Door Opening...");
if(isConfigFileOk){
bootstrapManager.publish(overallStatusTopic.c_str(), "opening", true);
bootstrapManager.publish(doorStatusTopic.c_str(), "opening", true);
}
}
lastDirectionChangeCounter = doorPositionCounter;
doorState = "opening";
}
if(lastDirectionChangeCounter - doorPositionCounter > 5){
if(doorState != "closing"){
ESP_LOGD(TAG,"Door Closing...");
if(isConfigFileOk){
bootstrapManager.publish(overallStatusTopic.c_str(), "closing", true);
bootstrapManager.publish(doorStatusTopic.c_str(), "closing", true);
}
}
lastDirectionChangeCounter = doorPositionCounter;
doorState = "closing";
}
// 250 millis after the last rotary encoder pulse, the door is stopped
if(millis() - lastCounterMillis > 250){
// if the door was closing, and is now stopped, then the door is closed
if(doorState == "closing"){
doorState = "closed";
ESP_LOGD(TAG,"Closed");
if(isConfigFileOk){
bootstrapManager.publish(overallStatusTopic.c_str(), doorState.c_str(), true);
bootstrapManager.publish(doorStatusTopic.c_str(), doorState.c_str(), true);
}
digitalWrite(STATUS_DOOR,LOW);
}
// if the door was opening, and is now stopped, then the door is open
if(doorState == "opening"){
doorState = "open";
ESP_LOGD(TAG,"Open");
if(isConfigFileOk){
bootstrapManager.publish(overallStatusTopic.c_str(), doorState.c_str(), true);
bootstrapManager.publish(doorStatusTopic.c_str(), doorState.c_str(), true);
}
digitalWrite(STATUS_DOOR,HIGH);
}
}
lastDoorPositionCounter = doorPositionCounter;
}
/*************************** DRY CONTACT CONTROL OF LIGHT & DOOR ***************************/
void IRAM_ATTR isrDebounce(const char *type){
static unsigned long lastOpenDoorTime = 0;
static unsigned long lastCloseDoorTime = 0;
static unsigned long lastToggleLightTime = 0;
unsigned long currentMillis = millis();
// Prevent ISR during the first 2 seconds after reboot
if(currentMillis < 2000) return;
if(strcmp(type, "openDoor") == 0){
if(digitalRead(TRIGGER_OPEN) == LOW){
// save the time of the falling edge
lastOpenDoorTime = currentMillis;
}else if(currentMillis - lastOpenDoorTime > 500 && currentMillis - lastOpenDoorTime < 10000){
// now see if the rising edge was between 500ms and 10 seconds after the falling edge
dryContactDoorOpen = true;
}
}
if(strcmp(type, "closeDoor") == 0){
if(digitalRead(TRIGGER_CLOSE) == LOW){
// save the time of the falling edge
lastCloseDoorTime = currentMillis;
}else if(currentMillis - lastCloseDoorTime > 500 && currentMillis - lastCloseDoorTime < 10000){
// now see if the rising edge was between 500ms and 10 seconds after the falling edge
dryContactDoorClose = true;
}
}
if(strcmp(type, "toggleLight") == 0){
if(digitalRead(TRIGGER_LIGHT) == LOW){
// save the time of the falling edge
lastToggleLightTime = currentMillis;
}else if(currentMillis - lastToggleLightTime > 500 && currentMillis - lastToggleLightTime < 10000){
// now see if the rising edge was between 500ms and 10 seconds after the falling edge
dryContactToggleLight = true;
}
}
}
void IRAM_ATTR isrDoorOpen(){
isrDebounce("openDoor");
}
void IRAM_ATTR isrDoorClose(){
isrDebounce("closeDoor");
}
void IRAM_ATTR isrLight(){
isrDebounce("toggleLight");
}
// Fire on RISING edge of RPM1
void IRAM_ATTR isrRPM1(){
rpm1Pulsed = true;
}
// Fire on RISING edge of RPM2
// When RPM1 HIGH on RPM2 rising edge, door closing:
// RPM1: __|--|___
// RPM2: ___|--|__
// When RPM1 LOW on RPM2 rising edge, door opening:
// RPM1: ___|--|__
// RPM2: __|--|___
void IRAM_ATTR isrRPM2(){
// The encoder updates faster than the ESP wants to process, so by sampling every 5ms we get a more reliable curve
// The counter is behind the actual pulse counter, but it doesn't matter since we only need a reliable linear counter
// to determine the door direction
static unsigned long lastPulse = 0;
unsigned long currentMillis = millis();
if(currentMillis - lastPulse < 5){
return;
}
// In rare situations, the rotary encoder can be parked so that RPM2 continuously fires this ISR.
// This causes the door counter to change value even though the door isn't moving
// To solve this, check to see if RPM1 pulsed. If not, do nothing. If yes, reset the pulsed flag
if(rpm1Pulsed){
rpm1Pulsed = false;
}else{
return;
}
lastPulse = millis();
// If the RPM1 state is different from the RPM2 state, then the door is opening
if(digitalRead(INPUT_RPM1)){
doorPositionCounter--;
}else{
doorPositionCounter++;
}
}
// handle changes to the dry contact state
void dryContactLoop(){
if(dryContactDoorOpen){
ESP_LOGD(TAG,"Dry Contact: open the door");
dryContactDoorOpen = false;
openDoor();
}
if(dryContactDoorClose){
ESP_LOGD(TAG,"Dry Contact: close the door");
dryContactDoorClose = false;
closeDoor();
}
if(dryContactToggleLight){
ESP_LOGD(TAG,"Dry Contact: toggle the light");
dryContactToggleLight = false;
toggleLight();
}
}
/*************************** OBSTRUCTION DETECTION ***************************/
void IRAM_ATTR isrObstruction(){
if(digitalRead(INPUT_OBST)){
lastObstructionHigh = millis();
}else{
obstructionLowCount++;
}
}
void obstructionLoop(){
long currentMillis = millis();
static unsigned long lastMillis = 0;
// the obstruction sensor has 3 states: clear (HIGH with LOW pulse every 7ms), obstructed (HIGH), asleep (LOW)
// the transitions between awake and asleep are tricky because the voltage drops slowly when falling asleep
// and is high without pulses when waking up
// If at least 3 low pulses are counted within 50ms, the door is awake, not obstructed and we don't have to check anything else
// Every 50ms
if(currentMillis - lastMillis > 50){
// check to see if we got between 3 and 8 low pulses on the line
if(obstructionLowCount >= 3 && obstructionLowCount <= 8){
obstructionCleared();
// if there have been no pulses the line is steady high or low
}else if(obstructionLowCount == 0){
// if the line is high and the last high pulse was more than 70ms ago, then there is an obstruction present
if(digitalRead(INPUT_OBST) && currentMillis - lastObstructionHigh > 70){
obstructionDetected();
}else{
// asleep
}
}
lastMillis = currentMillis;
obstructionLowCount = 0;
}
}
void obstructionDetected(){
static unsigned long lastInterruptTime = 0;
unsigned long interruptTime = millis();
// Anything less than 100ms is a bounce and is ignored
if(interruptTime - lastInterruptTime > 250){
doorIsObstructed = true;
digitalWrite(STATUS_OBST,HIGH);
ESP_LOGD(TAG,"Obstruction Detected");
if(isConfigFileOk){
bootstrapManager.publish(overallStatusTopic.c_str(), "obstructed", true);
bootstrapManager.publish(obstructionStatusTopic.c_str(), "obstructed", true);
}
}
lastInterruptTime = interruptTime;
}
void obstructionCleared(){
if(doorIsObstructed){
doorIsObstructed = false;
digitalWrite(STATUS_OBST,LOW);
ESP_LOGD(TAG,"Obstruction Cleared");
if(isConfigFileOk){
bootstrapManager.publish(overallStatusTopic.c_str(), "clear", true);
bootstrapManager.publish(obstructionStatusTopic.c_str(), "clear", true);
}
}
}
void sendDoorStatus(){
ESP_LOGD(TAG,"Door state %s", doorState);
if(isConfigFileOk){
bootstrapManager.publish(overallStatusTopic.c_str(), doorState.c_str(), true);
bootstrapManager.publish(doorStatusTopic.c_str(), doorState.c_str(), true);
}
}
void sendCurrentCounter(){
String msg = String(rollingCodeCounter);
ESP_LOGD(TAG, "Current counter %d", rollingCodeCounter);
if(isConfigFileOk){
bootstrapManager.publish(rollingCodeTopic.c_str(), msg.c_str(), true);
}
}
/********************************** MANAGE HARDWARE BUTTON *****************************************/
void manageHardwareButton(){
}
/************************* DOOR COMMUNICATION *************************/
/*
* Transmit a message to the door opener over uart1
* The TX1 pin is controlling a transistor, so the logic is inverted
* A HIGH state on TX1 will pull the 12v line LOW
*
* The opener requires a specific duration low/high pulse before it will accept a message
*/
void transmit(byte* payload, unsigned int length){
digitalWrite(OUTPUT_GDO, HIGH); // pull the line high for 1305 micros so the door opener responds to the message
delayMicroseconds(1305);
digitalWrite(OUTPUT_GDO, LOW); // bring the line low
delayMicroseconds(1260); // "LOW" pulse duration before the message start
swSerial.write(payload, length);
}
void sync(){
if(!useRollingCodes) return;
getRollingCode("reboot1");
transmit(rollingCode,CODE_LENGTH);
delay(45);
getRollingCode("reboot2");
transmit(rollingCode,CODE_LENGTH);
delay(45);
getRollingCode("reboot3");
transmit(rollingCode,CODE_LENGTH);
delay(45);
getRollingCode("reboot4");
transmit(rollingCode,CODE_LENGTH);
delay(45);
getRollingCode("reboot5");
transmit(rollingCode,CODE_LENGTH);
delay(45);
getRollingCode("reboot6");
transmit(rollingCode,CODE_LENGTH);
delay(45);
writeCounterToFlash();
}
void openDoor(){
if(doorState == "open" || doorState == "opening"){
ESP_LOGD(TAG, "The door is already %s", doorState);
return;
}
doorState = "opening"; // It takes a couple of pulses to detect opening/closing. by setting here, we can avoid bouncing from rapidly repeated commands
if(useRollingCodes){
getRollingCode("door1");
transmit(rollingCode,CODE_LENGTH);
delay(40);
getRollingCode("door2");
transmit(rollingCode,CODE_LENGTH);
writeCounterToFlash();
}else{
for(int i=0; i<4; i++){
ESP_LOGD(TAG, "sync_code[%d]", i);
transmit(SYNC_CODE[i],CODE_LENGTH);
delay(45);
}
ESP_LOGD(TAG, "door_code")
transmit(DOOR_CODE,CODE_LENGTH);
}
}
void closeDoor(){
if(doorState == "closed" || doorState == "closing"){
ESP_LOGD(TAG, "The door is already %s", doorState);
return;
}
doorState = "closing"; // It takes a couple of pulses to detect opening/closing. by setting here, we can avoid bouncing from rapidly repeated commands
if(useRollingCodes){
getRollingCode("door1");
transmit(rollingCode,CODE_LENGTH);
delay(40);
getRollingCode("door2");
transmit(rollingCode,CODE_LENGTH);
writeCounterToFlash();
}else{
for(int i=0; i<4; i++){
ESP_LOGD(TAG, "sync_code[%d]", i);
transmit(SYNC_CODE[i],CODE_LENGTH);
delay(45);
}
ESP_LOGD(TAG, "door_code")
transmit(DOOR_CODE,CODE_LENGTH);
}
}
void toggleLight(){
if(useRollingCodes){
getRollingCode("light");
transmit(rollingCode,CODE_LENGTH);
writeCounterToFlash();
}else{
for(int i=0; i<4; i++){
ESP_LOGD(TAG, "sync_code[%d]", i);
transmit(SYNC_CODE[i],CODE_LENGTH);
delay(45);
}
ESP_LOGD(TAG, "light_code")
transmit(LIGHT_CODE,CODE_LENGTH);
}
}