This commit is contained in:
J. Nick Koston 2023-06-05 12:13:01 -05:00
parent 1d04b22eb2
commit 4af7a079d8
No known key found for this signature in database
5 changed files with 543 additions and 501 deletions

View File

@ -1,16 +1,7 @@
import esphome.codegen as cg import esphome.codegen as cg import esphome.config_validation as cv from esphome.core import coroutine_with_priority
import esphome.config_validation as cv
from esphome.core import coroutine_with_priority
ratgdo_ns = cg.esphome_ns.namespace("ratgdo") ratgdo_ns = cg.esphome_ns.namespace("ratgdo")
CONFIG_SCHEMA = cv.All( CONFIG_SCHEMA = cv.All(cv.Schema({}), )
cv.Schema({}),
)
@coroutine_with_priority(1.0) async def to_code(config) :cg.add_library("bblanchon/ArduinoJson", "6.18.5") cg.add_define("USE_JSON") cg.add_global(ratgdo_ns.using)
@coroutine_with_priority(1.0)
async def to_code(config):
cg.add_library("bblanchon/ArduinoJson", "6.18.5")
cg.add_define("USE_JSON")
cg.add_global(ratgdo_ns.using)

View File

@ -11,488 +11,507 @@
* GNU GENERAL PUBLIC LICENSE * GNU GENERAL PUBLIC LICENSE
************************************/ ************************************/
#include "common.h"
#include "ratgdo.h" #include "ratgdo.h"
#include "common.h"
#include "esphome/core/log.h" #include "esphome/core/log.h"
namespace esphome namespace esphome {
{ namespace ratgdo {
namespace ratgdo
{
static const char *const TAG = "ratgdo"; static const char *const TAG = "ratgdo";
void RATGDOComponent::setup() void RATGDOComponent::setup() {
{ pinMode(TRIGGER_OPEN, INPUT_PULLUP);
pinMode(TRIGGER_OPEN, INPUT_PULLUP); pinMode(TRIGGER_CLOSE, INPUT_PULLUP);
pinMode(TRIGGER_CLOSE, INPUT_PULLUP); pinMode(TRIGGER_LIGHT, INPUT_PULLUP);
pinMode(TRIGGER_LIGHT, INPUT_PULLUP); pinMode(STATUS_DOOR, OUTPUT);
pinMode(STATUS_DOOR, OUTPUT); pinMode(STATUS_OBST, OUTPUT);
pinMode(STATUS_OBST, OUTPUT); pinMode(INPUT_RPM1,
pinMode(INPUT_RPM1, INPUT_PULLUP); // set to pullup to add support for reed switches INPUT_PULLUP); // set to pullup to add support for reed switches
pinMode(INPUT_RPM2, INPUT_PULLUP); // make sure pin doesn't float when using reed switch and fire interrupt by mistake pinMode(INPUT_RPM2,
pinMode(INPUT_OBST, INPUT); INPUT_PULLUP); // make sure pin doesn't float when using reed switch
// and fire interrupt by mistake
pinMode(INPUT_OBST, INPUT);
attachInterrupt(TRIGGER_OPEN,isrDoorOpen,CHANGE); attachInterrupt(TRIGGER_OPEN, isrDoorOpen, CHANGE);
attachInterrupt(TRIGGER_CLOSE,isrDoorClose,CHANGE); attachInterrupt(TRIGGER_CLOSE, isrDoorClose, CHANGE);
attachInterrupt(TRIGGER_LIGHT,isrLight,CHANGE); attachInterrupt(TRIGGER_LIGHT, isrLight, CHANGE);
attachInterrupt(INPUT_OBST,isrObstruction,CHANGE); attachInterrupt(INPUT_OBST, isrObstruction, CHANGE);
attachInterrupt(INPUT_RPM1,isrRPM1,RISING); attachInterrupt(INPUT_RPM1, isrRPM1, RISING);
attachInterrupt(INPUT_RPM2,isrRPM2,RISING); attachInterrupt(INPUT_RPM2, isrRPM2, RISING);
LittleFS.begin(); LittleFS.begin();
readCounterFromFlash(); readCounterFromFlash();
if(useRollingCodes){ if (useRollingCodes) {
//if(rollingCodeCounter == 0) rollingCodeCounter = 1; // if(rollingCodeCounter == 0) rollingCodeCounter = 1;
ESP_LOGD(TAG, "Syncing rolling code counter after reboot..."); ESP_LOGD(TAG, "Syncing rolling code counter after reboot...");
sync(); // if rolling codes are being used (rolling code counter > 0), send reboot/sync to the opener on startup sync(); // if rolling codes are being used (rolling code counter > 0), send
}else{ // reboot/sync to the opener on startup
ESP_LOGD(TAG, "Rolling codes are disabled."); } else {
} ESP_LOGD(TAG, "Rolling codes are disabled.");
} }
}
void RATGDOComponent::loop(){ void RATGDOComponent::loop() {
obstructionLoop(); obstructionLoop();
doorStateLoop(); doorStateLoop();
dryContactLoop(); dryContactLoop();
} }
} // namespace ratgdo
} // namespace ratgdo
} // namespace esphome } // namespace esphome
/*************************** DETECTING THE DOOR STATE
* ***************************/
void doorStateLoop() {
static bool rotaryEncoderDetected = false;
static int lastDoorPositionCounter = 0;
static int lastDirectionChangeCounter = 0;
static int lastCounterMillis = 0;
// Handle reed switch
// This may need to be debounced, but so far in testing I haven't detected any
// bounces
if (!rotaryEncoderDetected) {
if (digitalRead(INPUT_RPM1) == LOW) {
if (doorState != "reed_closed") {
ESP_LOGD(TAG, "Reed switch closed");
doorState = "reed_closed";
if (isConfigFileOk) {
bootstrapManager.publish(overallStatusTopic.c_str(), "reed_closed",
true);
bootstrapManager.publish(doorStatusTopic.c_str(), "reed_closed",
true);
}
digitalWrite(STATUS_DOOR, HIGH);
}
} else if (doorState != "reed_open") {
ESP_LOGD(TAG, "Reed switch open");
doorState = "reed_open";
if (isConfigFileOk) {
bootstrapManager.publish(overallStatusTopic.c_str(), "reed_open", true);
bootstrapManager.publish(doorStatusTopic.c_str(), "reed_open", true);
}
digitalWrite(STATUS_DOOR, LOW);
}
}
// end reed switch handling
/*************************** DETECTING THE DOOR STATE ***************************/ // If the previous and the current state of the RPM2 Signal are different,
void doorStateLoop(){ // that means there is a rotary encoder detected and the door is moving
static bool rotaryEncoderDetected = false; if (doorPositionCounter != lastDoorPositionCounter) {
static int lastDoorPositionCounter = 0; rotaryEncoderDetected = true; // this disables the reed switch handler
static int lastDirectionChangeCounter = 0; lastCounterMillis = millis();
static int lastCounterMillis = 0;
// Handle reed switch ESP_LOGD(TAG, "Door Position: %d", doorPositionCounter);
// This may need to be debounced, but so far in testing I haven't detected any bounces }
if(!rotaryEncoderDetected){
if(digitalRead(INPUT_RPM1) == LOW){
if(doorState != "reed_closed"){
ESP_LOGD(TAG, "Reed switch closed");
doorState = "reed_closed";
if(isConfigFileOk){
bootstrapManager.publish(overallStatusTopic.c_str(), "reed_closed", true);
bootstrapManager.publish(doorStatusTopic.c_str(), "reed_closed", true);
}
digitalWrite(STATUS_DOOR,HIGH);
}
}else if(doorState != "reed_open"){
ESP_LOGD(TAG, "Reed switch open");
doorState = "reed_open";
if(isConfigFileOk){
bootstrapManager.publish(overallStatusTopic.c_str(), "reed_open", true);
bootstrapManager.publish(doorStatusTopic.c_str(), "reed_open", true);
}
digitalWrite(STATUS_DOOR,LOW);
}
}
// end reed switch handling
// If the previous and the current state of the RPM2 Signal are different, that means there is a rotary encoder detected and the door is moving // Wait 5 pulses before updating to door opening status
if(doorPositionCounter != lastDoorPositionCounter){ if (doorPositionCounter - lastDirectionChangeCounter > 5) {
rotaryEncoderDetected = true; // this disables the reed switch handler if (doorState != "opening") {
lastCounterMillis = millis(); ESP_LOGD(TAG, "Door Opening...");
if (isConfigFileOk) {
bootstrapManager.publish(overallStatusTopic.c_str(), "opening", true);
bootstrapManager.publish(doorStatusTopic.c_str(), "opening", true);
}
}
lastDirectionChangeCounter = doorPositionCounter;
doorState = "opening";
}
ESP_LOGD(TAG, "Door Position: %d", doorPositionCounter); if (lastDirectionChangeCounter - doorPositionCounter > 5) {
} if (doorState != "closing") {
ESP_LOGD(TAG, "Door Closing...");
if (isConfigFileOk) {
bootstrapManager.publish(overallStatusTopic.c_str(), "closing", true);
bootstrapManager.publish(doorStatusTopic.c_str(), "closing", true);
}
}
lastDirectionChangeCounter = doorPositionCounter;
doorState = "closing";
}
// Wait 5 pulses before updating to door opening status // 250 millis after the last rotary encoder pulse, the door is stopped
if(doorPositionCounter - lastDirectionChangeCounter > 5){ if (millis() - lastCounterMillis > 250) {
if(doorState != "opening"){ // if the door was closing, and is now stopped, then the door is closed
ESP_LOGD(TAG,"Door Opening..."); if (doorState == "closing") {
if(isConfigFileOk){ doorState = "closed";
bootstrapManager.publish(overallStatusTopic.c_str(), "opening", true); ESP_LOGD(TAG, "Closed");
bootstrapManager.publish(doorStatusTopic.c_str(), "opening", true); if (isConfigFileOk) {
} bootstrapManager.publish(overallStatusTopic.c_str(), doorState.c_str(),
} true);
lastDirectionChangeCounter = doorPositionCounter; bootstrapManager.publish(doorStatusTopic.c_str(), doorState.c_str(),
doorState = "opening"; true);
} }
digitalWrite(STATUS_DOOR, LOW);
}
if(lastDirectionChangeCounter - doorPositionCounter > 5){ // if the door was opening, and is now stopped, then the door is open
if(doorState != "closing"){ if (doorState == "opening") {
ESP_LOGD(TAG,"Door Closing..."); doorState = "open";
if(isConfigFileOk){ ESP_LOGD(TAG, "Open");
bootstrapManager.publish(overallStatusTopic.c_str(), "closing", true); if (isConfigFileOk) {
bootstrapManager.publish(doorStatusTopic.c_str(), "closing", true); bootstrapManager.publish(overallStatusTopic.c_str(), doorState.c_str(),
} true);
} bootstrapManager.publish(doorStatusTopic.c_str(), doorState.c_str(),
lastDirectionChangeCounter = doorPositionCounter; true);
doorState = "closing"; }
} digitalWrite(STATUS_DOOR, HIGH);
}
}
// 250 millis after the last rotary encoder pulse, the door is stopped lastDoorPositionCounter = doorPositionCounter;
if(millis() - lastCounterMillis > 250){
// if the door was closing, and is now stopped, then the door is closed
if(doorState == "closing"){
doorState = "closed";
ESP_LOGD(TAG,"Closed");
if(isConfigFileOk){
bootstrapManager.publish(overallStatusTopic.c_str(), doorState.c_str(), true);
bootstrapManager.publish(doorStatusTopic.c_str(), doorState.c_str(), true);
}
digitalWrite(STATUS_DOOR,LOW);
}
// if the door was opening, and is now stopped, then the door is open
if(doorState == "opening"){
doorState = "open";
ESP_LOGD(TAG,"Open");
if(isConfigFileOk){
bootstrapManager.publish(overallStatusTopic.c_str(), doorState.c_str(), true);
bootstrapManager.publish(doorStatusTopic.c_str(), doorState.c_str(), true);
}
digitalWrite(STATUS_DOOR,HIGH);
}
}
lastDoorPositionCounter = doorPositionCounter;
} }
/*************************** DRY CONTACT CONTROL OF LIGHT & DOOR ***************************/ /*************************** DRY CONTACT CONTROL OF LIGHT & DOOR
void IRAM_ATTR isrDebounce(const char *type){ * ***************************/
static unsigned long lastOpenDoorTime = 0; void IRAM_ATTR isrDebounce(const char *type) {
static unsigned long lastCloseDoorTime = 0; static unsigned long lastOpenDoorTime = 0;
static unsigned long lastToggleLightTime = 0; static unsigned long lastCloseDoorTime = 0;
unsigned long currentMillis = millis(); static unsigned long lastToggleLightTime = 0;
unsigned long currentMillis = millis();
// Prevent ISR during the first 2 seconds after reboot // Prevent ISR during the first 2 seconds after reboot
if(currentMillis < 2000) return; if (currentMillis < 2000)
return;
if(strcmp(type, "openDoor") == 0){ if (strcmp(type, "openDoor") == 0) {
if(digitalRead(TRIGGER_OPEN) == LOW){ if (digitalRead(TRIGGER_OPEN) == LOW) {
// save the time of the falling edge // save the time of the falling edge
lastOpenDoorTime = currentMillis; lastOpenDoorTime = currentMillis;
}else if(currentMillis - lastOpenDoorTime > 500 && currentMillis - lastOpenDoorTime < 10000){ } else if (currentMillis - lastOpenDoorTime > 500 &&
// now see if the rising edge was between 500ms and 10 seconds after the falling edge currentMillis - lastOpenDoorTime < 10000) {
dryContactDoorOpen = true; // now see if the rising edge was between 500ms and 10 seconds after the
} // falling edge
} dryContactDoorOpen = true;
}
}
if(strcmp(type, "closeDoor") == 0){ if (strcmp(type, "closeDoor") == 0) {
if(digitalRead(TRIGGER_CLOSE) == LOW){ if (digitalRead(TRIGGER_CLOSE) == LOW) {
// save the time of the falling edge // save the time of the falling edge
lastCloseDoorTime = currentMillis; lastCloseDoorTime = currentMillis;
}else if(currentMillis - lastCloseDoorTime > 500 && currentMillis - lastCloseDoorTime < 10000){ } else if (currentMillis - lastCloseDoorTime > 500 &&
// now see if the rising edge was between 500ms and 10 seconds after the falling edge currentMillis - lastCloseDoorTime < 10000) {
dryContactDoorClose = true; // now see if the rising edge was between 500ms and 10 seconds after the
} // falling edge
} dryContactDoorClose = true;
}
}
if(strcmp(type, "toggleLight") == 0){ if (strcmp(type, "toggleLight") == 0) {
if(digitalRead(TRIGGER_LIGHT) == LOW){ if (digitalRead(TRIGGER_LIGHT) == LOW) {
// save the time of the falling edge // save the time of the falling edge
lastToggleLightTime = currentMillis; lastToggleLightTime = currentMillis;
}else if(currentMillis - lastToggleLightTime > 500 && currentMillis - lastToggleLightTime < 10000){ } else if (currentMillis - lastToggleLightTime > 500 &&
// now see if the rising edge was between 500ms and 10 seconds after the falling edge currentMillis - lastToggleLightTime < 10000) {
dryContactToggleLight = true; // now see if the rising edge was between 500ms and 10 seconds after the
} // falling edge
} dryContactToggleLight = true;
}
}
} }
void IRAM_ATTR isrDoorOpen(){ void IRAM_ATTR isrDoorOpen() { isrDebounce("openDoor"); }
isrDebounce("openDoor");
}
void IRAM_ATTR isrDoorClose(){ void IRAM_ATTR isrDoorClose() { isrDebounce("closeDoor"); }
isrDebounce("closeDoor");
}
void IRAM_ATTR isrLight(){ void IRAM_ATTR isrLight() { isrDebounce("toggleLight"); }
isrDebounce("toggleLight");
}
// Fire on RISING edge of RPM1 // Fire on RISING edge of RPM1
void IRAM_ATTR isrRPM1(){ void IRAM_ATTR isrRPM1() { rpm1Pulsed = true; }
rpm1Pulsed = true;
}
// Fire on RISING edge of RPM2 // Fire on RISING edge of RPM2
// When RPM1 HIGH on RPM2 rising edge, door closing: // When RPM1 HIGH on RPM2 rising edge, door closing:
// RPM1: __|--|___ // RPM1: __|--|___
// RPM2: ___|--|__ // RPM2: ___|--|__
// When RPM1 LOW on RPM2 rising edge, door opening: // When RPM1 LOW on RPM2 rising edge, door opening:
// RPM1: ___|--|__ // RPM1: ___|--|__
// RPM2: __|--|___ // RPM2: __|--|___
void IRAM_ATTR isrRPM2(){ void IRAM_ATTR isrRPM2() {
// The encoder updates faster than the ESP wants to process, so by sampling every 5ms we get a more reliable curve // The encoder updates faster than the ESP wants to process, so by sampling
// The counter is behind the actual pulse counter, but it doesn't matter since we only need a reliable linear counter // every 5ms we get a more reliable curve The counter is behind the actual
// to determine the door direction // pulse counter, but it doesn't matter since we only need a reliable linear
static unsigned long lastPulse = 0; // counter to determine the door direction
unsigned long currentMillis = millis(); static unsigned long lastPulse = 0;
unsigned long currentMillis = millis();
if(currentMillis - lastPulse < 5){ if (currentMillis - lastPulse < 5) {
return; return;
} }
// In rare situations, the rotary encoder can be parked so that RPM2 continuously fires this ISR. // In rare situations, the rotary encoder can be parked so that RPM2
// This causes the door counter to change value even though the door isn't moving // continuously fires this ISR. This causes the door counter to change value
// To solve this, check to see if RPM1 pulsed. If not, do nothing. If yes, reset the pulsed flag // even though the door isn't moving To solve this, check to see if RPM1
if(rpm1Pulsed){ // pulsed. If not, do nothing. If yes, reset the pulsed flag
rpm1Pulsed = false; if (rpm1Pulsed) {
}else{ rpm1Pulsed = false;
return; } else {
} return;
}
lastPulse = millis(); lastPulse = millis();
// If the RPM1 state is different from the RPM2 state, then the door is opening // If the RPM1 state is different from the RPM2 state, then the door is
if(digitalRead(INPUT_RPM1)){ // opening
doorPositionCounter--; if (digitalRead(INPUT_RPM1)) {
}else{ doorPositionCounter--;
doorPositionCounter++; } else {
} doorPositionCounter++;
}
} }
// handle changes to the dry contact state // handle changes to the dry contact state
void dryContactLoop(){ void dryContactLoop() {
if(dryContactDoorOpen){ if (dryContactDoorOpen) {
ESP_LOGD(TAG,"Dry Contact: open the door"); ESP_LOGD(TAG, "Dry Contact: open the door");
dryContactDoorOpen = false; dryContactDoorOpen = false;
openDoor(); openDoor();
} }
if(dryContactDoorClose){ if (dryContactDoorClose) {
ESP_LOGD(TAG,"Dry Contact: close the door"); ESP_LOGD(TAG, "Dry Contact: close the door");
dryContactDoorClose = false; dryContactDoorClose = false;
closeDoor(); closeDoor();
} }
if(dryContactToggleLight){ if (dryContactToggleLight) {
ESP_LOGD(TAG,"Dry Contact: toggle the light"); ESP_LOGD(TAG, "Dry Contact: toggle the light");
dryContactToggleLight = false; dryContactToggleLight = false;
toggleLight(); toggleLight();
} }
} }
/*************************** OBSTRUCTION DETECTION ***************************/ /*************************** OBSTRUCTION DETECTION ***************************/
void IRAM_ATTR isrObstruction(){ void IRAM_ATTR isrObstruction() {
if(digitalRead(INPUT_OBST)){ if (digitalRead(INPUT_OBST)) {
lastObstructionHigh = millis(); lastObstructionHigh = millis();
}else{ } else {
obstructionLowCount++; obstructionLowCount++;
} }
} }
void obstructionLoop(){ void obstructionLoop() {
long currentMillis = millis(); long currentMillis = millis();
static unsigned long lastMillis = 0; static unsigned long lastMillis = 0;
// the obstruction sensor has 3 states: clear (HIGH with LOW pulse every 7ms), obstructed (HIGH), asleep (LOW) // the obstruction sensor has 3 states: clear (HIGH with LOW pulse every 7ms),
// the transitions between awake and asleep are tricky because the voltage drops slowly when falling asleep // obstructed (HIGH), asleep (LOW) the transitions between awake and asleep
// and is high without pulses when waking up // are tricky because the voltage drops slowly when falling asleep and is high
// without pulses when waking up
// If at least 3 low pulses are counted within 50ms, the door is awake, not obstructed and we don't have to check anything else // If at least 3 low pulses are counted within 50ms, the door is awake, not
// obstructed and we don't have to check anything else
// Every 50ms // Every 50ms
if(currentMillis - lastMillis > 50){ if (currentMillis - lastMillis > 50) {
// check to see if we got between 3 and 8 low pulses on the line // check to see if we got between 3 and 8 low pulses on the line
if(obstructionLowCount >= 3 && obstructionLowCount <= 8){ if (obstructionLowCount >= 3 && obstructionLowCount <= 8) {
obstructionCleared(); obstructionCleared();
// if there have been no pulses the line is steady high or low // if there have been no pulses the line is steady high or low
}else if(obstructionLowCount == 0){ } else if (obstructionLowCount == 0) {
// if the line is high and the last high pulse was more than 70ms ago, then there is an obstruction present // if the line is high and the last high pulse was more than 70ms ago,
if(digitalRead(INPUT_OBST) && currentMillis - lastObstructionHigh > 70){ // then there is an obstruction present
obstructionDetected(); if (digitalRead(INPUT_OBST) && currentMillis - lastObstructionHigh > 70) {
}else{ obstructionDetected();
// asleep } else {
} // asleep
} }
}
lastMillis = currentMillis; lastMillis = currentMillis;
obstructionLowCount = 0; obstructionLowCount = 0;
} }
} }
void obstructionDetected(){ void obstructionDetected() {
static unsigned long lastInterruptTime = 0; static unsigned long lastInterruptTime = 0;
unsigned long interruptTime = millis(); unsigned long interruptTime = millis();
// Anything less than 100ms is a bounce and is ignored // Anything less than 100ms is a bounce and is ignored
if(interruptTime - lastInterruptTime > 250){ if (interruptTime - lastInterruptTime > 250) {
doorIsObstructed = true; doorIsObstructed = true;
digitalWrite(STATUS_OBST,HIGH); digitalWrite(STATUS_OBST, HIGH);
ESP_LOGD(TAG,"Obstruction Detected"); ESP_LOGD(TAG, "Obstruction Detected");
if(isConfigFileOk){ if (isConfigFileOk) {
bootstrapManager.publish(overallStatusTopic.c_str(), "obstructed", true); bootstrapManager.publish(overallStatusTopic.c_str(), "obstructed", true);
bootstrapManager.publish(obstructionStatusTopic.c_str(), "obstructed", true); bootstrapManager.publish(obstructionStatusTopic.c_str(), "obstructed",
} true);
} }
lastInterruptTime = interruptTime; }
lastInterruptTime = interruptTime;
} }
void obstructionCleared(){ void obstructionCleared() {
if(doorIsObstructed){ if (doorIsObstructed) {
doorIsObstructed = false; doorIsObstructed = false;
digitalWrite(STATUS_OBST,LOW); digitalWrite(STATUS_OBST, LOW);
ESP_LOGD(TAG,"Obstruction Cleared"); ESP_LOGD(TAG, "Obstruction Cleared");
if(isConfigFileOk){ if (isConfigFileOk) {
bootstrapManager.publish(overallStatusTopic.c_str(), "clear", true); bootstrapManager.publish(overallStatusTopic.c_str(), "clear", true);
bootstrapManager.publish(obstructionStatusTopic.c_str(), "clear", true); bootstrapManager.publish(obstructionStatusTopic.c_str(), "clear", true);
} }
} }
} }
void sendDoorStatus(){ void sendDoorStatus() {
ESP_LOGD(TAG,"Door state %s", doorState); ESP_LOGD(TAG, "Door state %s", doorState);
if(isConfigFileOk){ if (isConfigFileOk) {
bootstrapManager.publish(overallStatusTopic.c_str(), doorState.c_str(), true); bootstrapManager.publish(overallStatusTopic.c_str(), doorState.c_str(),
bootstrapManager.publish(doorStatusTopic.c_str(), doorState.c_str(), true); true);
} bootstrapManager.publish(doorStatusTopic.c_str(), doorState.c_str(), true);
}
} }
void sendCurrentCounter(){ void sendCurrentCounter() {
String msg = String(rollingCodeCounter); String msg = String(rollingCodeCounter);
ESP_LOGD(TAG, "Current counter %d", rollingCodeCounter); ESP_LOGD(TAG, "Current counter %d", rollingCodeCounter);
if(isConfigFileOk){ if (isConfigFileOk) {
bootstrapManager.publish(rollingCodeTopic.c_str(), msg.c_str(), true); bootstrapManager.publish(rollingCodeTopic.c_str(), msg.c_str(), true);
} }
}
/********************************** MANAGE HARDWARE BUTTON *****************************************/
void manageHardwareButton(){
} }
/********************************** MANAGE HARDWARE BUTTON
* *****************************************/
void manageHardwareButton() {}
/************************* DOOR COMMUNICATION *************************/ /************************* DOOR COMMUNICATION *************************/
/* /*
* Transmit a message to the door opener over uart1 * Transmit a message to the door opener over uart1
* The TX1 pin is controlling a transistor, so the logic is inverted * The TX1 pin is controlling a transistor, so the logic is inverted
* A HIGH state on TX1 will pull the 12v line LOW * A HIGH state on TX1 will pull the 12v line LOW
* *
* The opener requires a specific duration low/high pulse before it will accept a message * The opener requires a specific duration low/high pulse before it will accept
* a message
*/ */
void transmit(byte* payload, unsigned int length){ void transmit(byte *payload, unsigned int length) {
digitalWrite(OUTPUT_GDO, HIGH); // pull the line high for 1305 micros so the door opener responds to the message digitalWrite(OUTPUT_GDO, HIGH); // pull the line high for 1305 micros so the
delayMicroseconds(1305); // door opener responds to the message
digitalWrite(OUTPUT_GDO, LOW); // bring the line low delayMicroseconds(1305);
digitalWrite(OUTPUT_GDO, LOW); // bring the line low
delayMicroseconds(1260); // "LOW" pulse duration before the message start delayMicroseconds(1260); // "LOW" pulse duration before the message start
swSerial.write(payload, length); swSerial.write(payload, length);
} }
void sync(){ void sync() {
if(!useRollingCodes) return; if (!useRollingCodes)
return;
getRollingCode("reboot1"); getRollingCode("reboot1");
transmit(rollingCode,CODE_LENGTH); transmit(rollingCode, CODE_LENGTH);
delay(45); delay(45);
getRollingCode("reboot2"); getRollingCode("reboot2");
transmit(rollingCode,CODE_LENGTH); transmit(rollingCode, CODE_LENGTH);
delay(45); delay(45);
getRollingCode("reboot3"); getRollingCode("reboot3");
transmit(rollingCode,CODE_LENGTH); transmit(rollingCode, CODE_LENGTH);
delay(45); delay(45);
getRollingCode("reboot4"); getRollingCode("reboot4");
transmit(rollingCode,CODE_LENGTH); transmit(rollingCode, CODE_LENGTH);
delay(45); delay(45);
getRollingCode("reboot5"); getRollingCode("reboot5");
transmit(rollingCode,CODE_LENGTH); transmit(rollingCode, CODE_LENGTH);
delay(45); delay(45);
getRollingCode("reboot6"); getRollingCode("reboot6");
transmit(rollingCode,CODE_LENGTH); transmit(rollingCode, CODE_LENGTH);
delay(45); delay(45);
writeCounterToFlash(); writeCounterToFlash();
} }
void openDoor(){ void openDoor() {
if(doorState == "open" || doorState == "opening"){ if (doorState == "open" || doorState == "opening") {
ESP_LOGD(TAG, "The door is already %s", doorState); ESP_LOGD(TAG, "The door is already %s", doorState);
return; return;
} }
doorState = "opening"; // It takes a couple of pulses to detect opening/closing. by setting here, we can avoid bouncing from rapidly repeated commands doorState = "opening"; // It takes a couple of pulses to detect
// opening/closing. by setting here, we can avoid
// bouncing from rapidly repeated commands
if(useRollingCodes){ if (useRollingCodes) {
getRollingCode("door1"); getRollingCode("door1");
transmit(rollingCode,CODE_LENGTH); transmit(rollingCode, CODE_LENGTH);
delay(40); delay(40);
getRollingCode("door2"); getRollingCode("door2");
transmit(rollingCode,CODE_LENGTH); transmit(rollingCode, CODE_LENGTH);
writeCounterToFlash(); writeCounterToFlash();
}else{ } else {
for(int i=0; i<4; i++){ for (int i = 0; i < 4; i++) {
ESP_LOGD(TAG, "sync_code[%d]", i); ESP_LOGD(TAG, "sync_code[%d]", i);
transmit(SYNC_CODE[i],CODE_LENGTH); transmit(SYNC_CODE[i], CODE_LENGTH);
delay(45); delay(45);
} }
ESP_LOGD(TAG, "door_code") ESP_LOGD(TAG, "door_code")
transmit(DOOR_CODE,CODE_LENGTH); transmit(DOOR_CODE, CODE_LENGTH);
} }
} }
void closeDoor(){ void closeDoor() {
if(doorState == "closed" || doorState == "closing"){ if (doorState == "closed" || doorState == "closing") {
ESP_LOGD(TAG, "The door is already %s", doorState); ESP_LOGD(TAG, "The door is already %s", doorState);
return; return;
} }
doorState = "closing"; // It takes a couple of pulses to detect opening/closing. by setting here, we can avoid bouncing from rapidly repeated commands doorState = "closing"; // It takes a couple of pulses to detect
// opening/closing. by setting here, we can avoid
// bouncing from rapidly repeated commands
if(useRollingCodes){ if (useRollingCodes) {
getRollingCode("door1"); getRollingCode("door1");
transmit(rollingCode,CODE_LENGTH); transmit(rollingCode, CODE_LENGTH);
delay(40); delay(40);
getRollingCode("door2"); getRollingCode("door2");
transmit(rollingCode,CODE_LENGTH); transmit(rollingCode, CODE_LENGTH);
writeCounterToFlash();
}else{
for(int i=0; i<4; i++){
ESP_LOGD(TAG, "sync_code[%d]", i);
writeCounterToFlash();
} else {
for (int i = 0; i < 4; i++) {
ESP_LOGD(TAG, "sync_code[%d]", i);
transmit(SYNC_CODE[i],CODE_LENGTH); transmit(SYNC_CODE[i], CODE_LENGTH);
delay(45); delay(45);
} }
ESP_LOGD(TAG, "door_code") ESP_LOGD(TAG, "door_code")
transmit(DOOR_CODE,CODE_LENGTH); transmit(DOOR_CODE, CODE_LENGTH);
} }
} }
void toggleLight(){ void toggleLight() {
if(useRollingCodes){ if (useRollingCodes) {
getRollingCode("light"); getRollingCode("light");
transmit(rollingCode,CODE_LENGTH); transmit(rollingCode, CODE_LENGTH);
writeCounterToFlash(); writeCounterToFlash();
}else{ } else {
for(int i=0; i<4; i++){ for (int i = 0; i < 4; i++) {
ESP_LOGD(TAG, "sync_code[%d]", i); ESP_LOGD(TAG, "sync_code[%d]", i);
transmit(SYNC_CODE[i],CODE_LENGTH); transmit(SYNC_CODE[i], CODE_LENGTH);
delay(45); delay(45);
} }
ESP_LOGD(TAG, "light_code") ESP_LOGD(TAG, "light_code")
transmit(LIGHT_CODE,CODE_LENGTH); transmit(LIGHT_CODE, CODE_LENGTH);
} }
} }

View File

@ -14,63 +14,82 @@
#ifndef _RATGDO_H #ifndef _RATGDO_H
#define _RATGDO_H #define _RATGDO_H
#include "BootstrapManager.h" // Must use the https://github.com/PaulWieland/arduinoImprovBootstrapper fork, ratgdo branch #include "BootstrapManager.h" // Must use the https://github.com/PaulWieland/arduinoImprovBootstrapper fork, ratgdo branch
#include "SoftwareSerial.h" // Using espsoftwareserial https://github.com/plerup/espsoftwareserial #include "SoftwareSerial.h" // Using espsoftwareserial https://github.com/plerup/espsoftwareserial
#include "rolling_code.h"
#include "home_assistant.h" #include "home_assistant.h"
#include "rolling_code.h"
SoftwareSerial swSerial; SoftwareSerial swSerial;
/********************************** BOOTSTRAP MANAGER *****************************************/ /********************************** BOOTSTRAP MANAGER
* *****************************************/
BootstrapManager bootstrapManager; BootstrapManager bootstrapManager;
/********************************** PIN DEFINITIONS *****************************************/ /********************************** PIN DEFINITIONS
#define OUTPUT_GDO D4 // red control terminal / GarageDoorOpener (UART1 TX) pin is D4 on D1 Mini * *****************************************/
#define TRIGGER_OPEN D5 // dry contact for opening door #define OUTPUT_GDO \
D4 // red control terminal / GarageDoorOpener (UART1 TX) pin is D4 on D1 Mini
#define TRIGGER_OPEN D5 // dry contact for opening door
#define TRIGGER_CLOSE D6 // dry contact for closing door #define TRIGGER_CLOSE D6 // dry contact for closing door
#define TRIGGER_LIGHT D3 // dry contact for triggering light (no discrete light commands, so toggle only) #define TRIGGER_LIGHT \
D3 // dry contact for triggering light (no discrete light commands, so toggle
// only)
#define STATUS_DOOR D0 // output door status, HIGH for open, LOW for closed #define STATUS_DOOR D0 // output door status, HIGH for open, LOW for closed
#define STATUS_OBST D8 // output for obstruction status, HIGH for obstructed, LOW for clear #define STATUS_OBST \
#define INPUT_RPM1 D1 // RPM1 rotary encoder input OR reed switch if not soldering to the door opener logic board D8 // output for obstruction status, HIGH for obstructed, LOW for clear
#define INPUT_RPM2 D2 // RPM2 rotary encoder input OR not used if using reed switch #define INPUT_RPM1 \
D1 // RPM1 rotary encoder input OR reed switch if not soldering to the door
// opener logic board
#define INPUT_RPM2 \
D2 // RPM2 rotary encoder input OR not used if using reed switch
#define INPUT_OBST D7 // black obstruction sensor terminal #define INPUT_OBST D7 // black obstruction sensor terminal
/********************************** MQTT TOPICS
/********************************** MQTT TOPICS *****************************************/ * *****************************************/
String doorCommandTopic = ""; // will be mqttTopicPrefix/deviceName/command String doorCommandTopic = ""; // will be mqttTopicPrefix/deviceName/command
String setCounterTopic = ""; // will be mqttTopicPrefix/deviceName/set_code_counter String setCounterTopic =
""; // will be mqttTopicPrefix/deviceName/set_code_counter
String doorCommand = ""; // will be [open|close|light] String doorCommand = ""; // will be [open|close|light]
String overallStatusTopic = ""; // legacy from 1.0. Will be mqttTopicPrefix/deviceName/status String overallStatusTopic =
""; // legacy from 1.0. Will be mqttTopicPrefix/deviceName/status
String availabilityStatusTopic = ""; // online|offline String availabilityStatusTopic = ""; // online|offline
String obstructionStatusTopic = ""; // obstructed|clear String obstructionStatusTopic = ""; // obstructed|clear
String doorStatusTopic = ""; // open|opening|closing|closed|reed_open|reed_closed String doorStatusTopic =
String rollingCodeTopic = ""; // broadcast the current rolling code count for debugging purposes ""; // open|opening|closing|closed|reed_open|reed_closed
String rollingCodeTopic =
""; // broadcast the current rolling code count for debugging purposes
/********************************** GLOBAL VARS *****************************************/ /********************************** GLOBAL VARS
* *****************************************/
bool setupComplete = false; bool setupComplete = false;
unsigned int rollingCodeCounter; unsigned int rollingCodeCounter;
byte rollingCode[CODE_LENGTH]; byte rollingCode[CODE_LENGTH];
String doorState = "unknown"; // will be [online|offline|opening|open|closing|closed|obstructed|clear|reed_open|reed_closed] String doorState =
"unknown"; // will be
// [online|offline|opening|open|closing|closed|obstructed|clear|reed_open|reed_closed]
unsigned int obstructionLowCount = 0; // count obstruction low pulses unsigned int obstructionLowCount = 0; // count obstruction low pulses
unsigned long lastObstructionHigh = 0; // count time between high pulses from the obst ISR unsigned long lastObstructionHigh =
0; // count time between high pulses from the obst ISR
bool doorIsObstructed = false; bool doorIsObstructed = false;
bool dryContactDoorOpen = false; bool dryContactDoorOpen = false;
bool dryContactDoorClose = false; bool dryContactDoorClose = false;
bool dryContactToggleLight = false; bool dryContactToggleLight = false;
int doorPositionCounter = 0; // calculate the door's movement and position int doorPositionCounter = 0; // calculate the door's movement and position
bool rpm1Pulsed = false; // did rpm1 get a pulse or not - eliminates an issue when the sensor is parked on a high pulse which fires rpm2 isr bool rpm1Pulsed =
false; // did rpm1 get a pulse or not - eliminates an issue when the sensor
// is parked on a high pulse which fires rpm2 isr
/********************************** FUNCTION DECLARATION *****************************************/ /********************************** FUNCTION DECLARATION
* *****************************************/
void callback(char *topic, byte *payload, unsigned int length); void callback(char *topic, byte *payload, unsigned int length);
void manageDisconnections(); void manageDisconnections();
void manageQueueSubscription(); void manageQueueSubscription();
void manageHardwareButton(); void manageHardwareButton();
void transmit(byte* payload, unsigned int length); void transmit(byte *payload, unsigned int length);
void sync(); void sync();
void openDoor(); void openDoor();
void closeDoor(); void closeDoor();
@ -85,7 +104,8 @@ void sendDoorStatus();
void doorStateLoop(); void doorStateLoop();
void dryContactLoop(); void dryContactLoop();
/********************************** INTERRUPT SERVICE ROUTINES ***********************************/ /********************************** INTERRUPT SERVICE ROUTINES
* ***********************************/
void IRAM_ATTR isrDebounce(const char *type); void IRAM_ATTR isrDebounce(const char *type);
void IRAM_ATTR isrDoorOpen(); void IRAM_ATTR isrDoorOpen();
void IRAM_ATTR isrDoorClose(); void IRAM_ATTR isrDoorClose();
@ -95,14 +115,20 @@ void IRAM_ATTR isrRPM1();
void IRAM_ATTR isrRPM2(); void IRAM_ATTR isrRPM2();
/*** Static Codes ***/ /*** Static Codes ***/
byte SYNC1[] = {0x55,0x01,0x00,0x61,0x12,0x49,0x2c,0x92,0x5b,0x24,0x96,0x86,0x0b,0x65,0x96,0xd9,0x8f,0x26,0x4a}; byte SYNC1[] = {0x55, 0x01, 0x00, 0x61, 0x12, 0x49, 0x2c, 0x92, 0x5b, 0x24,
byte SYNC2[] = {0x55,0x01,0x00,0x08,0x34,0x93,0x49,0xb4,0x92,0x4d,0x20,0x26,0x1b,0x4d,0xb4,0xdb,0xad,0x76,0x93}; 0x96, 0x86, 0x0b, 0x65, 0x96, 0xd9, 0x8f, 0x26, 0x4a};
byte SYNC3[] = {0x55,0x01,0x00,0x06,0x1b,0x2c,0xbf,0x4b,0x6d,0xb6,0x4b,0x18,0x20,0x92,0x09,0x20,0xf2,0x11,0x2c}; byte SYNC2[] = {0x55, 0x01, 0x00, 0x08, 0x34, 0x93, 0x49, 0xb4, 0x92, 0x4d,
byte SYNC4[] = {0x55,0x01,0x00,0x95,0x29,0x36,0x91,0x29,0x36,0x9a,0x69,0x05,0x2f,0xbe,0xdf,0x6d,0x16,0xcb,0xe7}; 0x20, 0x26, 0x1b, 0x4d, 0xb4, 0xdb, 0xad, 0x76, 0x93};
byte* SYNC_CODE[] = {SYNC1,SYNC2,SYNC3,SYNC4}; byte SYNC3[] = {0x55, 0x01, 0x00, 0x06, 0x1b, 0x2c, 0xbf, 0x4b, 0x6d, 0xb6,
0x4b, 0x18, 0x20, 0x92, 0x09, 0x20, 0xf2, 0x11, 0x2c};
byte SYNC4[] = {0x55, 0x01, 0x00, 0x95, 0x29, 0x36, 0x91, 0x29, 0x36, 0x9a,
0x69, 0x05, 0x2f, 0xbe, 0xdf, 0x6d, 0x16, 0xcb, 0xe7};
byte *SYNC_CODE[] = {SYNC1, SYNC2, SYNC3, SYNC4};
byte DOOR_CODE[] = {0x55,0x01,0x00,0x94,0x3f,0xef,0xbc,0xfb,0x7f,0xbe,0xfc,0xa6,0x1a,0x4d,0xa6,0xda,0x8d,0x36,0xb3}; byte DOOR_CODE[] = {0x55, 0x01, 0x00, 0x94, 0x3f, 0xef, 0xbc, 0xfb, 0x7f, 0xbe,
0xfc, 0xa6, 0x1a, 0x4d, 0xa6, 0xda, 0x8d, 0x36, 0xb3};
byte LIGHT_CODE[] = {0x55,0x01,0x00,0x94,0x3f,0xef,0xbc,0xfb,0x7f,0xbe,0xff,0xa6,0x1a,0x4d,0xa6,0xda,0x8d,0x76,0xb1}; byte LIGHT_CODE[] = {0x55, 0x01, 0x00, 0x94, 0x3f, 0xef, 0xbc, 0xfb, 0x7f, 0xbe,
0xff, 0xa6, 0x1a, 0x4d, 0xa6, 0xda, 0x8d, 0x76, 0xb1};
#endif #endif

View File

@ -1,97 +1,99 @@
#include "common.h"
#include "rolling_code.h" #include "rolling_code.h"
#include "common.h"
#include "secplus.h" #include "secplus.h"
void readCounterFromFlash(){ void readCounterFromFlash() {
//Open the file // Open the file
File file = LittleFS.open("/rollingcode.txt", "r"); File file = LittleFS.open("/rollingcode.txt", "r");
//Check if the file exists // Check if the file exists
if(!file){ if (!file) {
Serial.println("rollingcode.txt doesn't exist. creating..."); Serial.println("rollingcode.txt doesn't exist. creating...");
writeCounterToFlash(); writeCounterToFlash();
return; return;
} }
rollingCodeCounter = file.parseInt(); rollingCodeCounter = file.parseInt();
//Close the file // Close the file
file.close(); file.close();
} }
void writeCounterToFlash(){ void writeCounterToFlash() {
//Open the file // Open the file
File file = LittleFS.open("/rollingcode.txt", "w"); File file = LittleFS.open("/rollingcode.txt", "w");
//Write to the file // Write to the file
file.print(rollingCodeCounter); file.print(rollingCodeCounter);
delay(1); delay(1);
//Close the file // Close the file
file.close(); file.close();
Serial.println("Write successful"); Serial.println("Write successful");
} }
void getRollingCode(const char *command){ void getRollingCode(const char *command) {
Serial.print("rolling code for "); Serial.print("rolling code for ");
Serial.print(rollingCodeCounter); Serial.print(rollingCodeCounter);
Serial.print("|"); Serial.print("|");
Serial.print(command); Serial.print(command);
Serial.print(" : "); Serial.print(" : ");
uint64_t id = 0x539; uint64_t id = 0x539;
uint64_t fixed = 0; uint64_t fixed = 0;
uint32_t data = 0; uint32_t data = 0;
if(strcmp(command,"reboot1") == 0){ if (strcmp(command, "reboot1") == 0) {
fixed = 0x400000000; fixed = 0x400000000;
data = 0x0000618b; data = 0x0000618b;
}else if(strcmp(command,"reboot2") == 0){ } else if (strcmp(command, "reboot2") == 0) {
fixed = 0; fixed = 0;
data = 0x01009080; data = 0x01009080;
}else if(strcmp(command,"reboot3") == 0){ } else if (strcmp(command, "reboot3") == 0) {
fixed = 0; fixed = 0;
data = 0x0000b1a0; data = 0x0000b1a0;
}else if(strcmp(command,"reboot4") == 0){ } else if (strcmp(command, "reboot4") == 0) {
fixed = 0; fixed = 0;
data = 0x01009080; data = 0x01009080;
}else if(strcmp(command,"reboot5") == 0){ } else if (strcmp(command, "reboot5") == 0) {
fixed = 0x300000000; fixed = 0x300000000;
data = 0x00008092; data = 0x00008092;
}else if(strcmp(command,"reboot6") == 0){ } else if (strcmp(command, "reboot6") == 0) {
fixed = 0x300000000; fixed = 0x300000000;
data = 0x00008092; data = 0x00008092;
}else if(strcmp(command,"door1") == 0){ } else if (strcmp(command, "door1") == 0) {
fixed = 0x200000000; fixed = 0x200000000;
data = 0x01018280; data = 0x01018280;
}else if(strcmp(command,"door2") == 0){ } else if (strcmp(command, "door2") == 0) {
fixed = 0x200000000; fixed = 0x200000000;
data = 0x01009280; data = 0x01009280;
}else if(strcmp(command,"light") == 0){ } else if (strcmp(command, "light") == 0) {
fixed = 0x200000000; fixed = 0x200000000;
data = 0x00009281; data = 0x00009281;
}else{ } else {
Serial.println("ERROR: Invalid command"); Serial.println("ERROR: Invalid command");
return; return;
} }
fixed = fixed | id; fixed = fixed | id;
encode_wireline(rollingCodeCounter, fixed, data, rollingCode); encode_wireline(rollingCodeCounter, fixed, data, rollingCode);
printRollingCode(); printRollingCode();
if(strcmp(command,"door1") != 0){ // door2 is created with same counter and should always be called after door1 if (strcmp(command, "door1") != 0) { // door2 is created with same counter and
rollingCodeCounter = (rollingCodeCounter + 1) & 0xfffffff; // should always be called after door1
} rollingCodeCounter = (rollingCodeCounter + 1) & 0xfffffff;
return; }
return;
} }
void printRollingCode(){ void printRollingCode() {
for(int i = 0; i < CODE_LENGTH; i++){ for (int i = 0; i < CODE_LENGTH; i++) {
if(rollingCode[i] <= 0x0f) Serial.print("0"); if (rollingCode[i] <= 0x0f)
Serial.print(rollingCode[i],HEX); Serial.print("0");
} Serial.print(rollingCode[i], HEX);
Serial.println(""); }
Serial.println("");
} }

View File

@ -1,18 +1,22 @@
#ifndef _RATGDO_ROLLING_CODE_H #ifndef _RATGDO_ROLLING_CODE_H
#define _RATGDO_ROLLING_CODE_H #define _RATGDO_ROLLING_CODE_H
#include <Arduino.h>
#include <LittleFS.h>
#include <ArduinoJson.h>
#include "BootstrapManager.h" #include "BootstrapManager.h"
#include <Arduino.h>
#include <ArduinoJson.h>
#include <LittleFS.h>
extern "C" { extern "C" {
#include "secplus.h" #include "secplus.h"
} }
void readCounterFromFlash(); // get the rolling code counter from setup.json & return it void readCounterFromFlash(); // get the rolling code counter from setup.json &
void writeCounterToFlash(); // write the counter back to setup.json // return it
void getRollingCode(const char *command); // get the next rolling code for type [reboot1,reboot2,reboot3,reboot4,reboot5,door1,light] void writeCounterToFlash(); // write the counter back to setup.json
void getRollingCode(
const char
*command); // get the next rolling code for type
// [reboot1,reboot2,reboot3,reboot4,reboot5,door1,light]
void printRollingCode(); void printRollingCode();
#endif #endif