esphome-ratgdo/components/ratgdo/ratgdo.cpp

465 lines
13 KiB
C++

/************************************
* Rage
* Against
* The
* Garage
* Door
* Opener
*
* Copyright (C) 2022 Paul Wieland
*
* GNU GENERAL PUBLIC LICENSE
************************************/
#include "ratgdo.h"
#include "common.h"
#include "esphome/core/log.h"
namespace esphome {
namespace ratgdo {
static const char *const TAG = "ratgdo";
void RATGDOComponent::setup() {
swSerial.begin(9600, SWSERIAL_8N2, -1, OUTPUT_GDO, true);
pinMode(TRIGGER_OPEN, INPUT_PULLUP);
pinMode(TRIGGER_CLOSE, INPUT_PULLUP);
pinMode(TRIGGER_LIGHT, INPUT_PULLUP);
pinMode(STATUS_DOOR, OUTPUT);
pinMode(STATUS_OBST, OUTPUT);
pinMode(INPUT_RPM1,
INPUT_PULLUP); // set to pullup to add support for reed switches
pinMode(INPUT_RPM2,
INPUT_PULLUP); // make sure pin doesn't float when using reed switch
// and fire interrupt by mistake
pinMode(INPUT_OBST, INPUT);
attachInterrupt(TRIGGER_OPEN, isrDoorOpen, CHANGE);
attachInterrupt(TRIGGER_CLOSE, isrDoorClose, CHANGE);
attachInterrupt(TRIGGER_LIGHT, isrLight, CHANGE);
attachInterrupt(INPUT_OBST, isrObstruction, CHANGE);
attachInterrupt(INPUT_RPM1, isrRPM1, RISING);
attachInterrupt(INPUT_RPM2, isrRPM2, RISING);
LittleFS.begin();
readCounterFromFlash();
if (useRollingCodes) {
// if(rollingCodeCounter == 0) rollingCodeCounter = 1;
ESP_LOGD(TAG, "Syncing rolling code counter after reboot...");
sync(); // if rolling codes are being used (rolling code counter > 0), send
// reboot/sync to the opener on startup
} else {
ESP_LOGD(TAG, "Rolling codes are disabled.");
}
}
void RATGDOComponent::loop() {
obstructionLoop();
doorStateLoop();
dryContactLoop();
}
} // namespace ratgdo
} // namespace esphome
/*************************** DETECTING THE DOOR STATE
* ***************************/
void doorStateLoop() {
static bool rotaryEncoderDetected = false;
static int lastDoorPositionCounter = 0;
static int lastDirectionChangeCounter = 0;
static int lastCounterMillis = 0;
// Handle reed switch
// This may need to be debounced, but so far in testing I haven't detected any
// bounces
if (!rotaryEncoderDetected) {
if (digitalRead(INPUT_RPM1) == LOW) {
if (doorState != "reed_closed") {
ESP_LOGD(TAG, "Reed switch closed");
doorState = "reed_closed";
digitalWrite(STATUS_DOOR, HIGH);
}
} else if (doorState != "reed_open") {
ESP_LOGD(TAG, "Reed switch open");
doorState = "reed_open";
digitalWrite(STATUS_DOOR, LOW);
}
}
// end reed switch handling
// If the previous and the current state of the RPM2 Signal are different,
// that means there is a rotary encoder detected and the door is moving
if (doorPositionCounter != lastDoorPositionCounter) {
rotaryEncoderDetected = true; // this disables the reed switch handler
lastCounterMillis = millis();
ESP_LOGD(TAG, "Door Position: %d", doorPositionCounter);
}
// Wait 5 pulses before updating to door opening status
if (doorPositionCounter - lastDirectionChangeCounter > 5) {
if (doorState != "opening") {
ESP_LOGD(TAG, "Door Opening...");
}
lastDirectionChangeCounter = doorPositionCounter;
doorState = "opening";
}
if (lastDirectionChangeCounter - doorPositionCounter > 5) {
if (doorState != "closing") {
ESP_LOGD(TAG, "Door Closing...");
}
lastDirectionChangeCounter = doorPositionCounter;
doorState = "closing";
}
// 250 millis after the last rotary encoder pulse, the door is stopped
if (millis() - lastCounterMillis > 250) {
// if the door was closing, and is now stopped, then the door is closed
if (doorState == "closing") {
doorState = "closed";
ESP_LOGD(TAG, "Closed");
digitalWrite(STATUS_DOOR, LOW);
}
// if the door was opening, and is now stopped, then the door is open
if (doorState == "opening") {
doorState = "open";
ESP_LOGD(TAG, "Open");
digitalWrite(STATUS_DOOR, HIGH);
}
}
lastDoorPositionCounter = doorPositionCounter;
}
/*************************** DRY CONTACT CONTROL OF LIGHT & DOOR
* ***************************/
void IRAM_ATTR isrDebounce(const char *type) {
static unsigned long lastOpenDoorTime = 0;
static unsigned long lastCloseDoorTime = 0;
static unsigned long lastToggleLightTime = 0;
unsigned long currentMillis = millis();
// Prevent ISR during the first 2 seconds after reboot
if (currentMillis < 2000)
return;
if (strcmp(type, "openDoor") == 0) {
if (digitalRead(TRIGGER_OPEN) == LOW) {
// save the time of the falling edge
lastOpenDoorTime = currentMillis;
} else if (currentMillis - lastOpenDoorTime > 500 &&
currentMillis - lastOpenDoorTime < 10000) {
// now see if the rising edge was between 500ms and 10 seconds after the
// falling edge
dryContactDoorOpen = true;
}
}
if (strcmp(type, "closeDoor") == 0) {
if (digitalRead(TRIGGER_CLOSE) == LOW) {
// save the time of the falling edge
lastCloseDoorTime = currentMillis;
} else if (currentMillis - lastCloseDoorTime > 500 &&
currentMillis - lastCloseDoorTime < 10000) {
// now see if the rising edge was between 500ms and 10 seconds after the
// falling edge
dryContactDoorClose = true;
}
}
if (strcmp(type, "toggleLight") == 0) {
if (digitalRead(TRIGGER_LIGHT) == LOW) {
// save the time of the falling edge
lastToggleLightTime = currentMillis;
} else if (currentMillis - lastToggleLightTime > 500 &&
currentMillis - lastToggleLightTime < 10000) {
// now see if the rising edge was between 500ms and 10 seconds after the
// falling edge
dryContactToggleLight = true;
}
}
}
void IRAM_ATTR isrDoorOpen() { isrDebounce("openDoor"); }
void IRAM_ATTR isrDoorClose() { isrDebounce("closeDoor"); }
void IRAM_ATTR isrLight() { isrDebounce("toggleLight"); }
// Fire on RISING edge of RPM1
void IRAM_ATTR isrRPM1() { rpm1Pulsed = true; }
// Fire on RISING edge of RPM2
// When RPM1 HIGH on RPM2 rising edge, door closing:
// RPM1: __|--|___
// RPM2: ___|--|__
// When RPM1 LOW on RPM2 rising edge, door opening:
// RPM1: ___|--|__
// RPM2: __|--|___
void IRAM_ATTR isrRPM2() {
// The encoder updates faster than the ESP wants to process, so by sampling
// every 5ms we get a more reliable curve The counter is behind the actual
// pulse counter, but it doesn't matter since we only need a reliable linear
// counter to determine the door direction
static unsigned long lastPulse = 0;
unsigned long currentMillis = millis();
if (currentMillis - lastPulse < 5) {
return;
}
// In rare situations, the rotary encoder can be parked so that RPM2
// continuously fires this ISR. This causes the door counter to change value
// even though the door isn't moving To solve this, check to see if RPM1
// pulsed. If not, do nothing. If yes, reset the pulsed flag
if (rpm1Pulsed) {
rpm1Pulsed = false;
} else {
return;
}
lastPulse = millis();
// If the RPM1 state is different from the RPM2 state, then the door is
// opening
if (digitalRead(INPUT_RPM1)) {
doorPositionCounter--;
} else {
doorPositionCounter++;
}
}
// handle changes to the dry contact state
void dryContactLoop() {
if (dryContactDoorOpen) {
ESP_LOGD(TAG, "Dry Contact: open the door");
dryContactDoorOpen = false;
openDoor();
}
if (dryContactDoorClose) {
ESP_LOGD(TAG, "Dry Contact: close the door");
dryContactDoorClose = false;
closeDoor();
}
if (dryContactToggleLight) {
ESP_LOGD(TAG, "Dry Contact: toggle the light");
dryContactToggleLight = false;
toggleLight();
}
}
/*************************** OBSTRUCTION DETECTION ***************************/
void IRAM_ATTR isrObstruction() {
if (digitalRead(INPUT_OBST)) {
lastObstructionHigh = millis();
} else {
obstructionLowCount++;
}
}
void obstructionLoop() {
long currentMillis = millis();
static unsigned long lastMillis = 0;
// the obstruction sensor has 3 states: clear (HIGH with LOW pulse every 7ms),
// obstructed (HIGH), asleep (LOW) the transitions between awake and asleep
// are tricky because the voltage drops slowly when falling asleep and is high
// without pulses when waking up
// If at least 3 low pulses are counted within 50ms, the door is awake, not
// obstructed and we don't have to check anything else
// Every 50ms
if (currentMillis - lastMillis > 50) {
// check to see if we got between 3 and 8 low pulses on the line
if (obstructionLowCount >= 3 && obstructionLowCount <= 8) {
obstructionCleared();
// if there have been no pulses the line is steady high or low
} else if (obstructionLowCount == 0) {
// if the line is high and the last high pulse was more than 70ms ago,
// then there is an obstruction present
if (digitalRead(INPUT_OBST) && currentMillis - lastObstructionHigh > 70) {
obstructionDetected();
} else {
// asleep
}
}
lastMillis = currentMillis;
obstructionLowCount = 0;
}
}
void obstructionDetected() {
static unsigned long lastInterruptTime = 0;
unsigned long interruptTime = millis();
// Anything less than 100ms is a bounce and is ignored
if (interruptTime - lastInterruptTime > 250) {
doorIsObstructed = true;
digitalWrite(STATUS_OBST, HIGH);
ESP_LOGD(TAG, "Obstruction Detected");
}
lastInterruptTime = interruptTime;
}
void obstructionCleared() {
if (doorIsObstructed) {
doorIsObstructed = false;
digitalWrite(STATUS_OBST, LOW);
ESP_LOGD(TAG, "Obstruction Cleared");
}
}
void sendDoorStatus() { ESP_LOGD(TAG, "Door state %s", doorState); }
void sendCurrentCounter() {
String msg = String(rollingCodeCounter);
ESP_LOGD(TAG, "Current counter %d", rollingCodeCounter);
}
/********************************** MANAGE HARDWARE BUTTON
* *****************************************/
void manageHardwareButton() {}
/************************* DOOR COMMUNICATION *************************/
/*
* Transmit a message to the door opener over uart1
* The TX1 pin is controlling a transistor, so the logic is inverted
* A HIGH state on TX1 will pull the 12v line LOW
*
* The opener requires a specific duration low/high pulse before it will accept
* a message
*/
void transmit(byte *payload, unsigned int length) {
digitalWrite(OUTPUT_GDO, HIGH); // pull the line high for 1305 micros so the
// door opener responds to the message
delayMicroseconds(1305);
digitalWrite(OUTPUT_GDO, LOW); // bring the line low
delayMicroseconds(1260); // "LOW" pulse duration before the message start
swSerial.write(payload, length);
}
void sync() {
if (!useRollingCodes)
return;
getRollingCode("reboot1");
transmit(rollingCode, CODE_LENGTH);
delay(45);
getRollingCode("reboot2");
transmit(rollingCode, CODE_LENGTH);
delay(45);
getRollingCode("reboot3");
transmit(rollingCode, CODE_LENGTH);
delay(45);
getRollingCode("reboot4");
transmit(rollingCode, CODE_LENGTH);
delay(45);
getRollingCode("reboot5");
transmit(rollingCode, CODE_LENGTH);
delay(45);
getRollingCode("reboot6");
transmit(rollingCode, CODE_LENGTH);
delay(45);
writeCounterToFlash();
}
void openDoor() {
if (doorState == "open" || doorState == "opening") {
ESP_LOGD(TAG, "The door is already %s", doorState);
return;
}
doorState = "opening"; // It takes a couple of pulses to detect
// opening/closing. by setting here, we can avoid
// bouncing from rapidly repeated commands
if (useRollingCodes) {
getRollingCode("door1");
transmit(rollingCode, CODE_LENGTH);
delay(40);
getRollingCode("door2");
transmit(rollingCode, CODE_LENGTH);
writeCounterToFlash();
} else {
for (int i = 0; i < 4; i++) {
ESP_LOGD(TAG, "sync_code[%d]", i);
transmit(SYNC_CODE[i], CODE_LENGTH);
delay(45);
}
ESP_LOGD(TAG, "door_code")
transmit(DOOR_CODE, CODE_LENGTH);
}
}
void closeDoor() {
if (doorState == "closed" || doorState == "closing") {
ESP_LOGD(TAG, "The door is already %s", doorState);
return;
}
doorState = "closing"; // It takes a couple of pulses to detect
// opening/closing. by setting here, we can avoid
// bouncing from rapidly repeated commands
if (useRollingCodes) {
getRollingCode("door1");
transmit(rollingCode, CODE_LENGTH);
delay(40);
getRollingCode("door2");
transmit(rollingCode, CODE_LENGTH);
writeCounterToFlash();
} else {
for (int i = 0; i < 4; i++) {
ESP_LOGD(TAG, "sync_code[%d]", i);
transmit(SYNC_CODE[i], CODE_LENGTH);
delay(45);
}
ESP_LOGD(TAG, "door_code")
transmit(DOOR_CODE, CODE_LENGTH);
}
}
void toggleLight() {
if (useRollingCodes) {
getRollingCode("light");
transmit(rollingCode, CODE_LENGTH);
writeCounterToFlash();
} else {
for (int i = 0; i < 4; i++) {
ESP_LOGD(TAG, "sync_code[%d]", i);
transmit(SYNC_CODE[i], CODE_LENGTH);
delay(45);
}
ESP_LOGD(TAG, "light_code")
transmit(LIGHT_CODE, CODE_LENGTH);
}
}